How scientists fool themselves – and how they can stop

How scientists fool themselves – and how they can stop

by Regina Nuzzo

Illustration by Dale Edwin Murray

“This is the big problem in science that no one is talking about: even an honest person is a master of self-deception. Our brains evolved long ago on the African savannah, where jumping to plausible conclusions about the location of ripe fruit or the presence of a predator was a matter of survival. But a smart strategy for evading lions does not necessarily translate well to a modern laboratory, where tenure may be riding on the analysis of terabytes of multidimensional data. In today’s environment, our talent for jumping to conclusions makes it all too easy to find false patterns in randomness, to ignore alternative explanations for a result or to accept ‘reasonable’ outcomes without question — that is, to ceaselessly lead ourselves astray without realizing it.”
“Although it is impossible to document how often researchers fool themselves in data analysis, says Ioannidis, findings of irreproducibility beg for an explanation. The study of 100 psychology papers is a case in point: if one assumes that the vast majority of the original researchers were honest and diligent, then a large proportion of the problems can be explained only by unconscious biases. “This is a great time for research on research,” he says. “The massive growth of science allows for a massive number of results, and a massive number of errors and biases to study. So there’s good reason to hope we can find better ways to deal with these problems.” ”
“Today’s academic environment is more competitive than ever. There is an emphasis on piling up publications with statistically significant results — that is, with data relationships in which a commonly used measure of statistical certainty, the p-value, is 0.05 or less. “As a researcher, I’m not trying to produce misleading results,” says Nosek. “But I do have a stake in the outcome.” And that gives the mind excellent motivation to find what it is primed to find.”
“Another reason for concern about cognitive bias is the advent of staggeringly large multivariate data sets, often harbouring only a faint signal in a sea of random noise. Statistical methods have barely caught up with such data, and our brain’s methods are even worse, says Keith Baggerly, a statistician at the University of Texas MD Anderson Cancer Center in Houston. As he told a conference on challenges in bioinformatics last September in Research Triangle Park, North Carolina, “Our intuition when we start looking at 50, or hundreds of, variables sucks.” ”
“One trap that awaits during the early stages of research is what might be called hypothesis myopia: investigators fixate on collecting evidence to support just one hypothesis; neglect to look for evidence against it; and fail to consider other explanations. “People tend to ask questions that give ‘yes’ answers if their favoured hypothesis is true,” says Jonathan Baron, a psychologist at the University of Pennsylvania in Philadelphia.”
“In every one of these traps, cognitive biases are hitting the accelerator of science: the process of spotting potentially important scientific relationships. Countering those biases comes down to strengthening the ‘brake’: the ability to slow down, be sceptical of findings and eliminate false positives and dead ends.”

From Nature


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s